
Pertanika J. Sci. & Technol. 21 (1): 37 - 44 (2013)

SCIENCE & TECHNOLOGY
Journal homepage: http://www.pertanika.upm.edu.my/

ISSN: 0128-7680 © 2013 Universiti Putra Malaysia Press.

1 0'() (, , (),... (), ny t f t y y t y t t tτ τ= − − ≥ (1)

0() (), y t t t tφ= ≤ (2)

where ()tφ is the initial function, and iτ is the
delay function with 1, 2,..., .i n= According to
Bellen and Zennaro (2003), the delays iτ or

Solving Delay Differential Equations by Using Implicit 2-Point
Block Backward Differentiation Formula

Heng, S. C.*, Ibrahim, Z. B., Suleiman, M. and Ismail, F.
Mathematics Department, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor,
Malaysia

ABSTRACT

In this paper, an implicit 2-point Block Backward Differentiation formula (BBDF) method was
considered for solving Delay Differential Equations (DDEs). The method was implemented by using a
constant stepsize via Newton Iteration. This implicit block method was expected to produce two points
simultaneously. The efficiency of the method was compared with the existing classical 1-point Backward
Differentiation Formula (BDF) in terms of execution time and accuracy.

Keywords: Block Backward Differentiation formula, Delay Differential Equations, Interpolations

INTRODUCTION

In the recent years, the Mathematics society is gradually shifting their interest into numerical
treatment of DDEs due to its ability in Mathematical modelling of processes in various
applications as it provides the best, if not the only realistic simulation of the observed
phenomena (Ismail et al., 2002). This is because many physical systems possess the feature of
having a delayed respond in input conditions so that the rate at which processes occur depends
not only on the current state of the systems but also the past states (Ismail 1999).

Some of the known application areas of DDEs include the fields of Engineering, Biology
and Economy, such as in mixing of liquid, population growth, prey-predator population model
and electrodynamics (Driver 1976). The general form of the first order DDE is as follows:

Article history:
Received: 18 March 2011
Accepted: 13 September 2011

E-mail addresses:
cerylyn@yahoo.com (Heng, S. C.),
zarina@math.upm.edu.my (Ibrahim, Z. B.),
msuleiman@science.upm.edu.my (Suleiman, M.)
fudziah@science.upm.edu.my (Ismail, F.)
*Corresponding Author

mailto:cerylyn@yahoo.com

Heng, S. C., Ibrahim, Z. B., Suleiman, M. and Ismail, F.

38 Pertanika J. Sci. & Technol. 21 (1): 283 - 298 (2013)

lags as known to some, and which are always non-negative, can be divided into three different
situations according to the complexity of the phenomenon. The delays may be just constant,
which is referred to as the constant delay case, or the function of t, where iτ = iτ (t) which is
referred to as the variable or time dependant delay case, or even the function of t and y itself,
where iτ = ()(),i t y tτ , which is referred to as the state dependant delay case.

Currently, most of the numerical methods for solving ordinary differential equations
(ODEs) can be adapted to give corresponding techniques in solving DDEs. For example, stiff
DDEs are recognized through the behaviour of ODEs. This is because of the solutions in the
systems of DDEs, which may contain strongly damped components that rapidly approach
equilibrium states (Roth, 1980). In general, the largest source of stiff DDEs is the stiffness in
the ODEs components that are without the delay term. The stiffness of a linear system of ODEs
¢ = y Ay is expressed as ratio ()max | Re | min |Re |i i iil l where il are eigenvalues of A.

For this reason, there are actually many numerical methods proposed for solving DDEs. The
range of the methods comprises of one-step methods, as in Euler method and Runge-Kutta
methods, as well as multistep methods and block implicit methods (Ismail, 1999). Among the
proposed methods, the family of Runge-Kutta is the most famous numerical method used to
solve DDEs.

Research has shown various families of Runge-Kutta methods and interpolation techniques
which are used to solve DDEs. Among other, Oberle and Pesch (1981) developed two numerical
methods known as the Runge-Kutta-Fehlberg methods of orders 4 and 7 to solve DDEs.
Hermite interpolation is used to approximate the delay term. Ismail et al. (2002) solved delay
differential equations by using embedded Singly Diagonally Implicit Runge–Kutta method
and the delay term was obtained by using Hermite interpolation.

While most numerical methods to determine the solution for DDEs are based on the Runge-
Kutta formulas, some opted for Adams and backward differentiation formula (BDF) methods
to solve them. For instance, Bocharov et al. (1996) considered the application of the linear
multistep methods for the numerical solution of initial value problem for stiff delay differential
equations with several constant delays. As for the approximation of delayed variables, Bocharov
et al. (1996) used Nordsieck’s interpolation technique.

BLOCK BACKWARD DIFFERENTIATION FORMULA

The purpose of this paper is to solve stiff DDEs using 2-point block backward differentiation
formula (BBDF) method derived by Ibrahim et al. (2007). The corrector formulas are
formulated as follows:

1 1 2 1
1 22 2
3 3+ - + +=- + - +n n n n ny y y y hf (3)

2 1 1 2
2 9 18 6

11 11 11 11+ - + += - + +n n n n ny y y y hf (4)

Solving Delay Differential Equations by Using Implicit 2-Point Block Backward Differentiation Formula

39Pertanika J. Sci. & Technol. 21 (1): 283 - 298 (2013)

The numerical results were then compared to the classical 1-point backward differentiation
formula (BDF). The corrector formula (Lambert, 1993) is given as:

1 2 1 1
2 9 18 6

11 11 11 11+ - - += - + +n n n n ny y y y hf (5)

In general, most numerical methods for solving differential equations produce only one
new approximation value. However, the implicit block method can produce two new values
simultaneously at each step. Thus, it is logically safe to presume that this particular method
can reduce the timing of the calculation and its computational cost as well.

IMPLEMENTATION OF THE METHOD

Newton iteration is implemented in the method to evaluate the values of 1+ny
and 2+ny for solving equation [1]. The values for both 1+ny and 2+ny at (1)+i
th iterative are given as (1)

1
+
+
i

ny and (1)
2

+
+
i

ny . According to Ibrahim et al. (2007), the
Newton iteration takes the form of

()

()
1 1)(1) ()

1 1 '
1 1

()
()

++
+ +

+

= -
i

ni i
n n i

n

F y
y y

F y
 (6)

and
()

()
2 2)(1) ()

2 2 '
2 2

()
()

++
+ +

+

= -
i

ni i
n n i

n

F y
y y

F y
 (7)

Hence,

() ()()1 () () ()1
1 1 1 2 1 1

1

21 2 2
3

++
+ + + + +

+

æ ö¶ ÷ç ÷- - =- - + +ç ÷ç ÷ç ¶è ø
i i i i in

n n n n n
n

f
h y y y y hf

y
V (8)

() ()()1 () () ()2
2 2 1 2 2 2

2

6 18 61
11 11 11

++
+ + + + +

+

æ ö¶ ÷ç ÷- - = - + +ç ÷ç ÷ç ¶è ø
i i i i in

n n n n n
n

f
h y y y y hf

y
V (9)

where ¶
¶

f
y is a Jacobian and 1V , 2V are the back values.

Let

(1) (1) ()
1 1 1
+ +
+ + += -i i i

n n ne y y (10)

 (1) (1) ()
2 2 2

+ +
+ + += -i i i

n n ne y y (11)

Heng, S. C., Ibrahim, Z. B., Suleiman, M. and Ismail, F.

40 Pertanika J. Sci. & Technol. 21 (1): 283 - 298 (2013)

Then, equations [8] and [9] can be rewritten in the matrix form, as follows:

1
(1) () ()

1 11 1 1
(1) () ()

22 2 2 2

2

2 21 2 () 2 013 3
618 018 6 11 () 111111 11

n
i i i

n n n n
i i i

n n n n

n

f
h

y e y f
h

f e y fh
y

V
V

+
+

+ + + +
+

+ + + +

+

é ù¶ é ùê ú- é ùê ú- -ê ú é ù é ù é ù é ù¶ ê úê úê ú ê ú ê ú ê ú ê úê ú= + +ê úê ú ê ú ê ú ê ú ê úê ú¶ ê ú ë ûê ú ë û ë û ë û- ê ú- - ê ú ë ûê ú ê ú¶ ë ûê úë û

(12)

In order to solve the above matrix equation, LU decomposition, which is a matrix
decomposition that rewrites the matrix in the upper triangular matrix and lower triangular
matrix was used (William et al., 2007).

Let

1

1

2

2

21 2
3

18 61
11 11

n

n

n

n

f
h

y

f
h

A

y

+

+

+

+

é ùæ ö¶ ÷çê ú÷- ç ÷ê úç ÷ç¶è øê ú
ê úæ öê ú¶ ÷ç ÷ê ú- - ç

=

÷çê ú÷ç¶è øë û

 (13)

()

()

()

()
1 1 1

22 2

2 2 01
3

618 01 1111

i i
n n

i i
n n

y f
B h

y f

V
V

+ +

+ +

é ù é ùê ú- - é ù é ù é ùê úê ú ê ú ê ú ê úê ú= + +ê ú ê ú ê ú ê úê úê ú ê ú ê ú ë ûë û ë û- ê úê ú ë ûê úë û

 (14)

(1)
1

(1)
2

i
n
i

n

e
E

e

+
+
+
+

é ù
ê ú= ê ú
ë û

 (15)

A E B× = (16)

Suppose that matrix A is a product of the two matrices,

L U A× = (17)

where L is the lower triangular and U is the upper triangular. Thus,

() .L U E B× × = (18)

Let

.X U E= × (19)

Hence,

.L X B× = (20)

Solving Delay Differential Equations by Using Implicit 2-Point Block Backward Differentiation Formula

41Pertanika J. Sci. & Technol. 21 (1): 283 - 298 (2013)

and then solving,

U E X× = (21)

to get the matrix value of E . Finally, the approximation values of 1ny + and 2ny + can be
obtained. Furthermore, the existence of the delay term is the main difference between ODEs
and DDEs. Thus, in order to get the numerical solutions for DDEs, the delay term needs to be
solved in advance. For a situation where 0tα ≤ , the initial function ()tφ is used to calculate
the delay term, ()y α . Otherwise, the delay term is calculated by using Newton Divided
Difference interpolation.

Meanwhile, the formula to calculate the delay term (Richard et al., 1993) can be written as:

() [] []() ()
1

0 0 1 1, , ,
n

n k o k
k

P x z x z x x x x x x x -
=

= + ¼ - ¼ -å (22)

where []0 0()z x z x= .

Equation [22] is known as the Newton’s interpolatory divided-difference formula.
Normally, the delay terms are obtained by interpolation on the values of the chosen support
points. In order to obtain these support points, the delay argument should be close to the centre
of the points. However, if the delay argument under consideration is outside the points, it will
be treated as a special case and it can only be obtained through extrapolation.

PROBLEM TESTED

The followings are some of the tested problems to get the numerical results. All the tested
problems are stiff DDEs. The numerical results are obtained by using C language with constant
stepsize, H.

Problem 1:

() () ()()' 1000 (ln 1000 1) , 0 3, y t y t y t t=- + - - £ £

() , . 0ty t e t-= £

Exact solution is () .ty t e-=

Problem 2:

() () () ()' 3 31000 997 1 1000 99 7 , 0 3,y t y t e y t e t- -=- + - + - £ £

() ()1 exp 3 , 0.y t t t= + - £

Heng, S. C., Ibrahim, Z. B., Suleiman, M. and Ismail, F.

42 Pertanika J. Sci. & Technol. 21 (1): 283 - 298 (2013)

Exact solution is () ()1 exp 3 .y t t= + -

Problem 3:

() () () ()25' 24 1 , 0 3,y t y t e y t t-=- - - £ £

() ()25 , 0.ty t e t-= £

Exact solution is () .ty t e-=

NUMERICAL RESULTS AND DISCUSSION

In this section, the numerical results showed the performance of block method in solving the
first order stiff DDEs. All the results were obtained using the Microsoft Visual Studio 2010
software on a personal computer with Intel Core2 Duo CPU. The abbreviations used are stated
in Table 1.

TABLE 1: List of Abbreviations

Notation Description
H Stepsize
1BDF 1-point BDF method
2BBDF 2-point BBDF method
TS total number of steps
MAXE Maximum error
TIME CPU time in seconds

The errors are calculated by using the following formulas:

i i i
t exact approximateerr y y= - (23)

The maximum error, MAXE, is defined as:

()
1

MAXE max .i
ti TS

err
£ £

= (24)

The numerical results are given in Table 2 to Table 4. In the results, the notation 9.75159e-
004 represents the value of 9.75159 X 10-4. From the numerical results, it is clear that the total
number of steps in solving 2-point BBDF is half of the steps needed to solve the 1-point BDF.
The execution time for the 2-point BBDF is reduced up to 77% as compared to the 1-point
BDF. Meanwhile, the maximum errors for 2-point BBDF method are better than the 1-point
BDF for all the tested problems.

Solving Delay Differential Equations by Using Implicit 2-Point Block Backward Differentiation Formula

43Pertanika J. Sci. & Technol. 21 (1): 283 - 298 (2013)

TABLE 2: Numerical results for Problem 11

H METHOD TS MAXE TIME(seconds)

10
-2 1BDF

2BBDF
300
150

9.75159e-004
3.80236e-004

0.00836748
0.00190863

10
-3 1BDF

2BBDF
3000
1500

3.22629e-007
2.61239e-007

0.01103256
0.00451134

10
-4 1BDF

2BBDF
30000
15000

1.45149e-008
1.33568e-008

0.03742193
0.03079985

10
-5 1BDF

2BBDF
300000
150000

1.73433e-010
1.57914e-010

0.29473164
0.27820763

1The time of the execution of the 2-point BBDF for Problem 1 is about 77%, 59%, 17%, and 5% faster for the step-sizes of
10-2, 10-3, 10-4, and 10-5, respectively. The smaller step-size obtained a small difference in the execution time. This is due
to the total calculation of LU decomposition that requires matrix in 2BBDF.

TABLE 3: Numerical results for Problem 22

H METHOD TS MAXE TIME(seconds)

10
-2 1BDF

2BBDF
300
150

8.73499e-003
3.40594e-003

0.00843524
0.00295110

10
-3 1BDF

2BBDF
3000
1500

2.88750e-006
2.33921e-006

0.01167929
0.00715678

10
-4 1BDF

2BBDF
30000
15000

1.30592e-007
1.20176e-007

0.04287257
0.03564649

10
-5 1BDF

2BBDF
300000
150000

1.56085e-009
1.42118e-009

0.32652507
0.30610835

2The time of the execution of the 2 point BBDF for Problem 2 is about 65%, 38%, 16%, and 6% faster for the respective
step-sizes of 10-2, 10-3, 10-4, and 10-5

TABLE 4: Numerical results for Problem 33

H METHOD TS MAXE TIME(seconds)

10
-2 1BDF

2BBDF
300
150

4.63438e-002
4.41121e-002

0.00857305
0.00296303

10
-3 1BDF

2BBDF
2000
1500

1.00359e-003
9.28409e-004

0.01145794
0.00553071

10
-4 1BDF

2BBDF
20000
15000

1.10170e-005
9.97473e-006

0.03680099
0.02976354

10
-5 1BDF

2BBDF
200000
150000

1.11197e-007
1.00464e-007

0.26814825
0.26649446

3The time of the execution of the 2-point BBDF for Problem 3 is about 65%, 51%, 19%, and 1% faster for the stepsizes
of 10-2, 10-3, 10-4, and 10-5, respectively

Heng, S. C., Ibrahim, Z. B., Suleiman, M. and Ismail, F.

44 Pertanika J. Sci. & Technol. 21 (1): 283 - 298 (2013)

CONCLUSION

In this paper, it was observed that the 2-point BBDF achieved better results in terms of the
accuracy of the method as well as the execution time. Therefore, it can be concluded that the
2-point BBDF is suitable for solving stiff DDEs.

ACKNOWLEDGEMENTS

This work was fully supported by the Institute of Mathematical Research, Universiti Putra
Malaysia, under the Fundamental Scheme Research Grant (Project code: 01-09-09-681FR).

REFERENCES
Bellen, A., & Zennaro, M. (2003). Numerical Methods for Delay Differential Equations. New York:

Oxford University Press.

Bocharov, G. A., Marchuk, G. I., & Romanyukha, A. A. (1996). Numerical solution by LMMs of Stiff
Delay Differential systems modelling an Immnune Response. Numer. Math., 73, 131-148.

Driver, R. D. (1976). Ordinary and Delay Differential Equations. New Year: Springer-Verlag.

Ibrahim, Z. B., Othman, K. I., & Suleiman, M. (2007). Implicit r-point Block Backward Differentiation
Formula for Solving First Order Stiff ODEs. Applied Mathematics and Computation, 186, 558-565.

Ismail, F. (1999). Numerical Solution of Ordinary and Delay Differential Equations by Runge-Kutta
Type Methods (Ph.D Thesis dissertation). Universiti Putra Malaysia, Malaysia.

Ismail, F., Al-Khasawneh, R. A., Lwin, A. S., & Suleiman, M. (2002). Numerical Treatment of Delay
Differential Equations by Runge-Kutta Method Using Hermite Interpolation. Matematika, 18(2),
79-90.

Lambert, J. D. (1993). Numerical Methods for Ordinary Differential Systems: The Initial Value Problem.
Chichester, England: John Wiley and Sons.

Oberle, H. J., & Pesch, H. J. (1981). Numerical Treatment of Delay Differential Equations by Hermite
Interpolation. Numer. Math., 37, 235-255.

Richard, L., Burden, J., & Douglas, F. (1993). Numerical Analysis. Boston: PWS-Kent Pub. Co.

Roth, M. G. (1980). Difference Methods for Stiff Delay Differential Equations (Master Thesis
dissertation). University of Illinois, Illinois.

William, H. P., Saul, A. T., William, T. V., & Brian, P. F. (2007). Numerical Recipes: The Art of Scientific
Computing. New York: Cambridge University Press.

http://webopac.upm.edu.my:8000/cgi-bin/gw/chameleon?sessionid=2010060301045228494&skin=vtsb5&lng=en&inst=consortium&host=192.168.10.10%2b1111%2bDEFAULT&patronhost=192.168.10.10 1111 DEFAULT&search=SCAN&function=INITREQ&sourcescreen=INITREQ&pos=1&rootsearch=3&elementcount=1&u1=2009&t1=PWS-Kent Pub. Co.,&beginsrch=1

